skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Weike"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study investigates the development of a supramolecular peptide amphiphile (PA) material functionalized with phenylboronic acid (PBA) for glucose-responsive glucagon delivery. The PA-PBA system self-assembles into nanofibrillar hydrogels in the presence of physiological glucose levels, resulting in stable hydrogels capable of releasing glucagon under hypoglycemic conditions. Glucose responsiveness is driven by reversible binding between PBA and glucose, which modulates the electrostatic interactions necessary for hydrogel formation and dissolution. Through comprehensive in vitro characterization, including circular dichroism, zeta potential measurements, and rheological assessments, the PA-PBA system is found to exhibit glucose-dependent assembly, enabling controlled glucagon release that is inversely related to glucose concentration. Glucagon release is accelerated under low glucose conditions, simulating a hypoglycemic state, with a reduced rate seen at higher glucose levels. Evaluation of the platform in vivo using a type 1 diabetic mouse model demonstrates efficacy in protecting against insulin-induced hypoglycemia by restoring blood glucose levels following an insulin overdose. The ability to tailor glucagon release in response to fluctuating glucose concentrations underscores the potential of this platform for improving glycemic control. These findings suggest that glucose-stabilized supramolecular peptide hydrogels hold significant promise for responsive drug delivery applications, offering an approach to manage glucose levels in diabetes and other metabolic disorders. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. A transient mechanism to achieve gelation in host–guest supramolecular hydrogels is demonstrated by acidification and pH correctionviaindirect control from a biocatalytic enzyme network. 
    more » « less
  3. A self-assembling peptide nanofiber was developed to sense the microenvironmental pH change associated with bacterial growth. Using a near-infrared probe, a strong correlation was observed between the local pH reduction of bacterial colonies with the degree of peptide disassembly, which led to their enhanced antimicrobial activity against anaerobic bacteria. 
    more » « less
  4. Abstract Self‐assembled peptides are an emerging family of biomaterials that show great promise for a range of biomedical and biotechnological applications. Introducing and tuning the pH‐responsiveness of the assembly is highly desirable for improving their biological activities. Inspired by proteins with internal ionizable residues, we report a simple but effective approach to constructing pH‐responsive peptide assembly containing unnatural ionic amino acids with an aliphatic tertiary amine side chain. Through a combined experimental and computational investigation, we demonstrate that these residues can be accommodated and stabilized within the internal hydrophobic compartment of the peptide assembly. The hydrophobic microenvironment shifts their pKasignificantly from a basic pH typically found for free amines to a more biologically relevant pH in the weakly acidic range. The pH‐induced ionization and ionization‐dependent self‐assembly and disassembly are thoroughly investigated and correlated with the biological activity of the assembly. This new approach has unique advantages in tuning the pH‐responsiveness of self‐assembled peptides across a large pH range in a complex biological environment. We anticipate the ionizable amino acids developed here can be widely applicable to the synthesis and self‐assembly of many amphiphilic peptides with endowed pH‐responsive properties to enhance their biological activities toward applications ranging from targeted therapeutic delivery to proton transport. 
    more » « less
  5. Abstract Many new technologies, such as cancer microenvironment‐induced nanoparticle targeting and multivalent ligand approach for cell surface receptors, are developed for active targeting in cancer therapy. While the principle of each technology is well illustrated, most systems suffer from low targeting specificity and sensitivity. To fill the gap, this work demonstrates a successful attempt to combine both technologies to simultaneously improve cancer cell targeting sensitivity and specificity. Specifically, the main component is a targeting ligand conjugated self‐assembling monomer precursor (SAM‐P), which, at the tumor site, undergoes tumor‐triggered cleavage to release the active form of self‐assembling monomer capable of forming supramolecular nanostructures. Biophysical characterization confirms the chemical and physical transformation of SAM‐P from unimers or oligomers with low ligand valency to supramolecular assemblies with high ligand valency under a tumor‐mimicking reductive microenvironment. The in vitro fluorescence assay shows the importance of supramolecular morphology in mediating ligand–receptor interactions and targeting sensitivity. Enhanced targeting specificity and sensitivity can be achieved via tumor‐triggered supramolecular assembly and induces multivalent ligand presentation toward cell surface receptors, respectively. The results support this combined tumor microenvironment‐induced cell targeting and multivalent ligand display approach, and have great potential for use as cell‐specific molecular imaging and therapeutic agents with high sensitivity and specificity. 
    more » « less